

LA-UR-19-24462

Approved for public release; distribution is unlimited.

Title: Reactor Neutrino Spectral Distortions Play Little Role in Mass

Hierarchy Experiments

Author(s): Danielson, Daine Lee

Hayes-Sterbenz, Anna Catherine

Garvey, Gerald Thomas

Intended for: APS April Meeting 2019, 2019-04-13/2019-04-16 (Denver, Colorado,

United States)

Issued: 2019-05-15

Reactor Neutrino Spectral Distortions Play Little Role in Mass Hierarchy Experiments

Daine L. Danielson^{1,2}, Anna C. Hayes¹, Gerald T. Garvey³ *Physical Review D* **99**, 036001 (2019)

¹Los Alamos National Laboratory ²University of California, Davis ³University of Washington

> APS April Meeting April 16, 2019

The Neutrino Mass Hierarchy Problem

JUNO

- Reactor antineutrino oscillation experiment
- 20 kT liquid-scintillator-doped mineral oil
- 53 km baseline
- Goal: resolve the neutrino mass hierarchy to better than 3σ within six years

• 2017: "The benefits of a near detector for JUNO" arXiv:1710.07378 [hep-ph]

"the micro-structure present in antineutrino fluxes from nuclear reactors makes it essential to experimentally determine a reference spectrum with an energy resolution very similar to the one of JUNO."

micro-structure present in antineutrino fluxes

"Revealing fine structure in the antineutrino spectra from a nuclear reactor." Phys. Rev. C **98**, 014323. A. Sonzogni, M. Nino, and E. A. McCutchan

Coulomb enhancement of low energy betas

→ cutoffs in antineutrino spectra

 Reactor antineutrino spectrum is the sum of many individual beta decay spectra

And, the fine structure is uncertain...

We generate extremely conservative fine-structure error margins by simulating many different reactor antineutrino spectra with endpoint energies and amplitudes sampled from throughout and beyond their experimental uncertainties.

What impact will this fine structure have on mass hierarchy experiments?

- We reproduce summed nuclear reactor spectra
- We model oscillation physics, inverse beta decay cross section
- Is seeming alignment between sawtooths and oscillations a problem?

we consider the 'worst-case' scenario

- Degenerate parameters:
 What if nature chooses oscillation parameters easily fitted by the wrong hierarchy?
 Phys. Rev. D 87, 033005 (2013)
- JUNO aims to achieve 3% energy resolution. We assume only 3.2% is achieved.
- Given fine structure and statistical uncertainties, the hierarchy is unresolvable in energy space after 6 JUNO-equivalent years, but...

Fourier analysis

Restricting analysis to the experimentally allowed region in $|\Delta m^2|$ frequency space separates the hierarchies

$$F(\omega) \equiv 2\Delta \frac{L}{E} \sum_{i} g \left(\omega \left[\frac{L}{E} \right]_{i} \right) f \left(\left[\frac{L}{E} \right]_{i} \right)$$

$$\sigma(\omega) = 2\Delta \frac{L}{E} \sqrt{\sum_{i} g^{2} \left(\omega \left[\frac{L}{E}\right]_{i}\right) \sigma \left(\left[\frac{L}{E}\right]_{i}\right)^{2}}$$

Why does this work?

1. Fourier analysis is sensitive to phase differences, which are small in any given energy bin

Why does this work?

- 1. Fourier analysis is sensitive to phase differences, which are small in any given energy bin
- 2. Restricting to experimentally allowed $|\Delta m^2|$ window filters out the most fine structure effects, because it is not coherent with hierarchydependent oscillations

The Impact on JUNO

Given fine structure effects, in the worst case:

- With 3.2% energy resolution,
 JUNO can achieve
 3.8σ hierarchy determination after six years
- If they achieve their goal of 3% energy resolution: 5.8σ after six years
- Unrelated effects may reduce this projected significance. But fine nuclear structure effects are not the serious impediment they have been taken to be.
- Near detector development should not center on nuclear fine structure, as has been claimed.

Outlook

- JUNO is a very challenging experiment
- Unprecedented energy resolution (~3%)
- Unprecedented control of energy response (<0.5%)
- But impact of fine structure has been overstated

Thank you.

PHYSICAL REVIEW D **99**, 036001 (2019)

Reactor neutrino spectral distortions play little role in mass hierarchy experiments

D. L. Danielson, 1,2,* A. C. Hayes, and G. T. Garvey 3,4

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Department of Physics, University of California at Davis, Davis, California 95616, USA ³Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ⁴Department of Physics, University of Washington, Seattle, Washington 98195, USA

(Received 16 August 2018; published 5 February 2019)

